

Importance of Teaching Ultrasound- and Fluoroscopy-Guided Techniques in Vascular Access to Surgery Residents

Behnam Molavi¹, Parham Nikrafter^{2*}

¹ Department of Surgery, Research Center for Improvement of Surgical Outcomes and Procedures, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

² Department of Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

Received: 2025-12-24; Received in revised form: 2025-12-26; Accepted: 2025-12-28

Citation: Molavi B., Nikrafter P. Importance of Teaching Ultrasound- and Fluoroscopy-Guided Techniques in Vascular Access to Surgery Residents. *Acad J Surg*, 2025; 8(3): 109-110.

Dear Editor

Vascular access is a foundational clinical skill in surgical practice, with wide applicability in trauma, vascular surgery, critical care, and interventional procedures. While traditional landmark-based techniques have long been taught, robust evidence supports the superiority of ultrasound-guided vascular access for increasing first-pass success, reducing complications, and improving overall patient safety. Similarly, fluoroscopy-guided access remains essential for complex vascular procedures and should be taught systematically early in surgical training.

Ultrasound-guided access training has been shown to significantly improve procedural success and reduce safety risks compared to traditional techniques. Simulation-based curricula provide residents with repeated practice and objective feedback in a low-risk environment, leading to measurable performance gains. Moreover, simulation curricula specifically designed for femoral arterial access have demonstrated marked improvement in residents' technical ability and confidence. In addition, novel educational interventions, such as web-based and mastery learning systems, show promise in facilitating skill acquisition even outside traditional clinical settings.

Comparative studies have also highlighted procedural advantages of ultrasound guidance over fluoroscopy for common femoral artery access, including higher cannulation success and reduced inadvertent punctures critical insights that ought to guide surgical education priorities. As surgical practice increasingly integrates imaging modalities into both elective and emergency workflows, formal training in ultrasound and fluoroscopic techniques must be incorporated into residency curricula to ensure graduating surgeons are competent, safe, and prepared for modern clinical demands.

We therefore advocate for structured training modules in ultrasound- and fluoroscopy-guided vascular access, including dedicated simulation sessions, supervised clinical application, and objective competency assessments. Incorporating these skills into surgical residency education aligns training with contemporary practice, enhances patient safety, and equips future surgeons for the evolving scope of vascular and interventional care.

Thank you for considering this perspective.

References

1. Pendleton A, Bellomo TR, Lella SK, Jogerst K, Stefanescu A, Drachman D, et al. Development and Videographic Evaluation of a Vascular Access Simulation-Based Curriculum for Surgical and Medical Trainees. *Ann Surg Open*. 2024 Jul 15;5(3):e464. <https://doi.org/10.1097/as.0000000000000464>

* Corresponding author: Parham Nikrafter

Department of Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Email: pnikrafter@yahoo.com

Copyright © 2025 Tehran University of Medical Sciences. Published by Tehran University of Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (<https://creativecommons.org/licenses/by-nc/4.0/>).
Noncommercial uses of the work are permitted, provided the original work is properly cited.

2. McGraw R, Chaplin T, McKaigney C, Rang L, Jaeger M, Redfearn D, et al. Development and Evaluation of a Simulation-based Curriculum for Ultrasound-guided Central Venous Catheterization. *CJEM*. 2016;18(6):405–13. <https://doi.org/10.1017/cem.2016.329>
3. Sugiki D, Matsushima H, Asao T, Tokumine J, Lefor AK, Kamisasanuki T, et al. A web-based self-learning system for ultrasound-guided vascular access. *Medicine (Baltimore)*. 2022 Oct 28;101(43):e31292. <https://doi.org/10.1097/MD.00000000000031292>
4. Adhikari S, Schmier C, Marx J. Focused simulation training: emergency department nurses' confidence and comfort level in performing ultrasound-guided vascular access. *J Vasc Access*. 2015 Nov-Dec;16(6):515-20. <https://doi.org/10.5301/jva.5000436>
5. Mason MM, Richardson KD, Carino Mason MR, Swonger RM, Emami S, Anantha S, et al. Two Affordable, High-Fidelity Central Venous Models for Ultrasound-Guided Interventional Training. *Simul Healthc*. 2024 Dec 1;19(6):e154-e159. <https://doi.org/10.1097/sih.0000000000000738>
6. Stone P, Campbell J, Thompson S, Walker J. A prospective, randomized study comparing ultrasound versus fluoroscopic guided femoral arterial access in noncardiac vascular patients. *J Vasc Surg*. 2020 Jul;72(1):259-267. <https://doi.org/10.1016/j.jvs.2019.09.051>