Original Article

Biological Optimization of Cortical Bone Allografts: A Study on the Effects of Mesenchymal Stem Cells and Partial Demineralization and Laser Perforation

Abstract

Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone marrow mesenchymal stem cells seeding on partially demineralized laser-perforated (DLP) structural allografts that have been implanted in critical femoral defects.
Methods: Thirty-two Wistar rats were divided into four groups according to the type of structural bone allograft; the first: partially demineralized only (Donly), the second: partially demineralized stem cell seeded (DST), the third: partially DLP, and the fourth: partially demineralized laser-perforated and stem cell seeded (DLPST). Trans-cortical holes were achieved in four rows of three holes approximated cylindrical holes 0.5 mm in diameter, with centers 2.5 mm apart. P3 mesenchymal stromal cells (MSCs) were used for graft seeding. Histologic and histomorphometric analysis was performed at 12 weeks.
Results: DLP grafts had the highest woven bone formation, where most parts of laser pores were completely healed by woven bone. DST and DLPST grafts surfaces had extra vessel-ingrowth-like porosities. Furthermore, in the DLPST grafts, a distinct bone formation at the interfaces was noted.
Conclusions:This study indicated that surface changes induced by laser perforation, accelerated angiogenesis induction by MSCs, which resulted in endochondral bone formation at the interface. Despite non-optimal results, stem cells showed a tendency to improve osteochondrogenesis, and the process might have improved if they could have been supplemented with the proper stipulations.

Files
IssueVol 4 No 2 (2017) QRcode
SectionOriginal Article(s)
Keywords
Allografts Bone demineralization technique Laser Mesenchymal stem cell

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Mirghasemi SA, Sadeghi MS, Rahimi-Gabaran N, Baghban-Eslaminejad M. Biological Optimization of Cortical Bone Allografts: A Study on the Effects of Mesenchymal Stem Cells and Partial Demineralization and Laser Perforation. AJS. 2018;4(2):31-36.