The Immunology of Endometriosis and the Therapeutic Potential of Bispecific Antibodies: A Hypothesis
Abstract
Endometriosis is a chronic inflammatory disease characterized by the presence of endometrial lesions outside the uterus. Current treatment methods primarily focus on hormone-based therapy or invasive procedures. However, given the crucial role of the immune system in disease initiation and progression, there is an opportunity to explore new treatment approaches. Bispecific antibodies, which bind two different cells using their bivalent arms, have shown promise in treating cancers and autoimmune diseases. This study postulates that due to the similarities in pathogenesis between endometriosis and the aforementioned diseases, a novel therapeutic method based on this new target could be introduced. This could potentially lead to a reduction in limitations to patients' quality of life. In addition, it is important to highlight that future studies should prioritize the identification of specific binding markers on endometrial cells. This could contribute to the development of new diagnostic tools for the disease. Furthermore, the production of bispecific antibodies that selectively bind to these receptors on immune cells may prove effective in improving immune response.
2. Simoens S, Hummelshoj L, D’Hooghe T. Endometriosis: cost estimates and methodological perspective. Hum Reprod Update. 2007;13(4):395-404. https://doi. org/10.1093/humupd/dmm010
3. Nnoaham KE, Hummelshoj L, Webster P, d’Hooghe T, de Cicco Nardone F, de Cicco Nardone C, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96(2):366-73.e8. https://doi.org/10.1016/j. fertnstert.2011.05.090
4. Horne AW, Missmer SA. Pathophysiology, diagnosis, and management of endometriosis. BMJ. 2022;379:e070750. https://doi.org/10.1136/bmj-2022-070750
5. McCallion A., Sisnett D.J., Zutautas K.B., Hayati D., Spiess K.G., Aleksieva S. Endometriosis through an immunological lens: A pathophysiology based in immune dysregulation. Explor. Immunol. 2022;2:454-483. https://doi.org/10.37349/ei.2022.00062
6. Králíčková M, Vetvicka V. Immunological aspects of endometriosis: a review. Ann Transl Med. 2015;3(11):153.
7. Crispim PCA, Jammal MP, Murta EFC, Nomelini RS. Endometriosis: What is the Influence of Immune Cells? Immunol Invest. 2021;50(4):372-88. https://doi.org/10.10 80/08820139.2020.1764577
8. Maksym RB, Hoffmann-Młodzianowska M, Skibińska and Immunotherapy of Endometriosis. J Clin Med. 2021;10(24). https://doi.org/10.3390/jcm10245879
9. Kuhns MS, Davis MM, Garcia KC. Deconstructing the form and function of the TCR/CD3 complex. Immunity. 2006;24(2):133-9. https://doi.org/10.1016/j. immuni.2006.01.006
10. Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7(8):622-32. https://doi.org/10.1038/ nri2134
11. Moghaddam MZ, Ansariniya H, Seifati SM, Zare F, Fesahat F. Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. Am J Reprod Immunol. 2022;87(5):e13537. https://doi.org/10.1111/aji.13537
12. Koninckx PR, Fernandes R, Ussia A, Schindler L, Wattiez A, Al-Suwaidi S, et al. Pathogenesis Based Diagnosis and Treatment of Endometriosis. Front Endocrinol (Lausanne). 2021;12:745548. https://doi.org/10.3389/ fendo.2021.745548
13. Bafort C, Beebeejaun Y, Tomassetti C, Bosteels J, Duffy JM. Laparoscopic surgery for endometriosis. Cochrane Database Syst Rev. 2020;10(10):Cd011031. https://doi. org/10.1002/14651858.CD011031.pub3
14. Vanderstraeten A, Tuyaerts S, Amant F. The immune system in the normal endometrium and implications for endometrial cancer development. J Reprod Immunol. 2015;109:7-16. https://doi.org/10.1016/j.jri.2014.12.006
15. Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update. 2019;25(5):564-91. https://doi.org/10.1093/humupd/dmz018
16. Abramiuk M, Grywalska E, Małkowska P, Sierawska O, Hrynkiewicz R, Niedźwiedzka-Rystwej P. The Role of the Immune System in the Development of Endometriosis. Cells. 2022;11(13). https://doi.org/10.3390/cells11132028
17. Lin YJ, Lai MD, Lei HY, Wing LY. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology. 2006;147(3):1278-86. https://doi.org/10.1210/en.2005- 0790
18. Chen S, Liu Y, Zhong Z, Wei C, Liu Y, Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front Immunol. 2023;14:1134663. https://doi.org/10.3389/ fimmu.2023.1134663
19. Izumi G, Koga K, Takamura M, Makabe T, Satake E, Takeuchi A, et al. Involvement of immune cells in the pathogenesis of endometriosis. J Obstet Gynaecol Res. 2018;44(2):191-8. https://doi.org/10.1111/jog.13559
20. Lamceva J, Uljanovs R, Strumfa I. The Main Theories on the Pathogenesis of Endometriosis. Int J Mol Sci. 2023;24(5). https://doi.org/10.3390/ijms24054254
21. Ścieżyńska A, Komorowski M, Soszyńska M, Malejczyk J. NK Cells as Potential Targets for Immunotherapy in Endometriosis. J Clin Med. 2019;8(9). https://doi. org/10.3390/jcm8091468
22. Herington JL, Bruner-Tran KL, Lucas JA, Osteen KG. Immune interactions in endometriosis. Expert Rev Clin Immunol. 2011;7(5):611-26. https://doi.org/10.1586/ eci.11.53
23. Fainaru O, Adini A, Benny O, Adini I, Short S, Bazinet L, et al. Dendritic cells support angiogenesis and promote lesion growth in a murine model of endometriosis. FASEB J. 2008;22(2):522-9. https://doi.org/10.1096/ fj.07-9034com
24. Agostinis C, Balduit A, Mangogna A, Zito G, Romano F, Ricci G, et al. Immunological Basis of the Endometriosis: The Complement System as a Potential Therapeutic Target. Front Immunol. 2020;11:599117. https://doi. org/10.3389/fimmu.2020.599117
25. Riccio LGC, Baracat EC, Chapron C, Batteux F, Abrão MS. The role of the B lymphocytes in endometriosis: A systematic review. J Reprod Immunol. 2017;123:29-34. https://doi.org/10.1016/j.jri.2017.09.001
26. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490-500. https://doi. org/10.1038/nri2785
27. de Barros IBL, Malvezzi H, Gueuvoghlanian-Silva BY, Piccinato CA, Rizzo LV, Podgaec S.
28. Kotlyar A, Taylor HS, D’Hooghe TM. Use of immunomodulators to treat endometriosis. Best Pract Res Clin Obstet Gynaecol. 2019;60:56-65. https://doi. org/10.1016/j.bpobgyn.2019.06.006
29. Yovich JL, Rowlands PK, Lingham S, Sillender M, Srinivasan S. Pathogenesis of endometriosis: Look no further than John Sampson. Reprod Biomed Online. 2020;40(1):7-11. https://doi.org/10.1016/j. rbmo.2019.10.007
30. Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, et al. The Immunopathophysiology of Endometriosis. Trends Mol Med. 2018;24(9):748-62. https://doi.org/10.1016/j.molmed.2018.07.004
31. Riccio LGC, Santulli P, Marcellin L, Abrão MS, Batteux F, Chapron C. Immunology of Endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:39-49. https://doi. org/10.1016/j.bpobgyn.2018.01.010
32. Li W, Lin A, Qi L, Lv X, Yan S, Xue J, et al. Immunotherapy: A promising novel endometriosis therapy. Front Immunol. 2023;14:1128301. https://doi.org/10.3389/fimmu. 2023.1128301
33. Dolmans MM, Donnez J. Emerging Drug Targets for Endometriosis. Biomolecules. 2022;12(11). https://doi. org/10.3390/biom12111654
34. Greaves E, Temp J, Esnal-Zufiurre A, Mechsner S, Horne AW, Saunders PT. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol. 2015;185(8):2286-97. https://doi. org/10.1016/j.ajpath.2015.04.012
35. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity. 2002;17(2):211-20. https://doi.org/10.1016/S1074-7613(02)00365-5
36. Melioli G, Semino C, Semino A, Venturini PL, Ragni N. Recombinant interleukin-2 corrects in vitro the immunological defect of endometriosis. Am J Reprod Immunol. 1993;30(4):218-27. https://doi. org/10.1111/j.1600-0897.1993.tb00623.x
37. Podgaec S, Abrao MS, Dias JA Jr, Rizzo LV, de Oliveira RM, Baracat EC. Endometriosis: an inflammatory disease with a Th2 immune response component. Hum Reprod. 2007;22(5):1373-9. https://doi.org/10.1093/humrep/ del516
38. Ahn SH, Edwards AK, Singh SS, Young SL, Lessey BA, Tayade C. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J Immunol. 2015;195(6):2591-600. https://doi.org/10.4049/ jimmunol.1501138
39. Berbic M, Hey-Cunningham AJ, Ng C, Tokushige N, Ganewatta S, Markham R, et al. The role of Foxp3+ regulatory T-cells in endometriosis: a potential controlling mechanism for a complex, chronic immunological condition. Hum Reprod. 2010;25(4):900-7. https://doi. org/10.1093/humrep/deq020
40. Fakih H, Baggett B, Holtz G, Tsang KY, Lee JC, Williamson HO. Interleukin-1: a possible role in the infertility associated with endometriosis. Fertil Steril. 1987;47(2):213-7. https://doi.org/10.1016/S0015- 0282(16)49993-0
41. Keenan JA, Chen TT, Chadwell NL, Torry DS, Caudle MR. IL-1 beta, TNF-alpha, and IL-2 in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am J Reprod Immunol. 1995;34(6):381-5. https://doi.org/10.1111/j.1600-0897.1995.tb00968.x
42. Hudelist G, Lass H, Keckstein J, Walter I, Wieser F, Wenzl R, et al. Interleukin 1alpha and tissue-lytic matrix metalloproteinase-1 are elevated in ectopic endometrium of patients with endometriosis. Hum Reprod. 2005;20(6):1695-701. https://doi.org/10.1093/humrep/ deh794
43. Zhang S, Wang H, Meng C. [Alteration of peritoneal lymphocyte transformation and its interleukin-2 release in patients with infertility and endometriosis]. Zhonghua Fu Chan Ke Za Zhi. 1998;33(1):17-9.
44. Anderson TD, Hayes TJ, Powers GD, Gately MK, Tudor R, Rushton A. Comparative toxicity and pathology associated with administration of recombinant IL-2 to animals. Int Rev Exp Pathol. 1993;34 Pt A:57-77.
45. Martínez S, Garrido N, Coperias JL, Pardo F, Desco J, García-Velasco JA, et al. Serum interleukin-6 levels are elevated in women with minimal-mild endometriosis. Hum Reprod. 2007;22(3):836-42. https://doi.org/10.1093/ humrep/del419
46. Boutten A, Dehoux M, Edelman P, Seta N, Menard A, Madelenat P, et al. IL-6 and acute phase plasma proteins in peritoneal fluid of women with endometriosis. Clin Chim Acta. 1992;210(3):187-95. https://doi.org/10.1016/0009- 8981(92)90204-4
47. Wu MY, Ho HN, Chen SU, Chao KH, Chen CD, Yang YS. Increase in the production of interleukin-6, interleukin-10, and interleukin-12 by lipopolysaccharide-stimulated peritoneal macrophages from women with endometriosis. Am J Reprod Immunol. 1999;41(1):106-11. https://doi. org/10.1111/j.1600-0897.1999.tb00082.x
48. Li S, Fu X, Wu T, Yang L, Hu C, Wu R. Role of Interleukin-6 and Its Receptor in Endometriosis. Med Sci Monit. 2017;23:3801-7. https://doi.org/10.12659/ MSM.905226
49. Laird SM, Li TC, Bolton AE. The production of placental protein 14 and interleukin 6 by human endometrial cells in culture. Hum Reprod. 1993;8(6):793-8. https://doi. org/10.1093/oxfordjournals.humrep.a138144
50. Gazvani MR, Christmas S, Quenby S, Kirwan J, Johnson PM, Kingsland CR. Peritoneal fluid concentrations of interleukin-8 in women with endometriosis: relationship to stage of disease. Hum Reprod. 1998;13(7):1957-61. https://doi.org/10.1093/humrep/13.7.1957
51. Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97- 101. https://doi.org/10.1016/0014-5793(92)80909-Z
52. Arici A, Seli E, Zeyneloglu HB, Senturk LM, Oral E, Olive DL. Interleukin-8 induces proliferation of endometrial stromal cells: a potential autocrine growth factor. J Clin Endocrinol Metab. 1998;83(4):1201-5. https://doi. org/10.1210/jc.83.4.1201
53. Kim JY, Lee DH, Joo JK, Jin JO, Wang JW, Hong YS, et al. Effects of peritoneal fluid from endometriosis patients on interferon-gamma-induced protein-10 (CXCL10) and interleukin-8 (CXCL8) released by neutrophils and CD4+ T cells. Am J Reprod Immunol. 2009;62(3):128-38. https://doi.org/10.1111/j.1600-0897.2009.00722.x
54. Iwabe T, Harada T, Tsudo T, Tanikawa M, Onohara Y, Terakawa N. Pathogenetic significance of increased levels of interleukin-8 in the peritoneal fluid of patients with endometriosis. Fertil Steril. 1998;69(5):924-30. https://doi.org/10.1016/S0015-0282(98)00049-1
55. Del Prete G, De Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol. 1993;150(2):353-60. https://doi.org/10.4049/jimmunol.150.2.353
56. Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM. The dual role of IL-10. Trends Immunol. 2003;24(1):36-43. https://doi.org/10.1016/S1471- 4906(02)00009-1
57. Mueller MD, Lebovic DI, Garrett E, Taylor RN. Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil Steril. 2000;74(1):107-12. https://doi. org/10.1016/S0015-0282(00)00555-0
58. McLaren J, Prentice A, Charnock-Jones DS, Millican SA, Müller KH, Sharkey AM, et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482-9. https://doi.org/10.1172/ JCI118815
59. Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis. Ann N Y Acad Sci. 2002;955:89-100; discussion 18, 396-406. https://doi. org/10.1111/j.1749-6632.2002.tb02769.x
60. Wieser F, Dogan S, Klingel K, Diedrich K, Taylor RN, Hornung D. Expression and regulation of CCR1 in
peritoneal macrophages from women with and without endometriosis. Fertil Steril. 2005;83(6):1878-81. https://doi.org/10.1016/j.fertnstert.2004.12.034
61. Khorram O, Taylor RN, Ryan IP, Schall TJ, Landers DV. Peritoneal fluid concentrations of the cytokine RANTES correlate with the severity of endometriosis. Am J Obstet Gynecol. 1993;169(6):1545-9. https://doi.org/10.1016/0002-9378(93)90433-J
62. Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol. 1994;83(2):287-92.
63. Prud’homme GJ. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest. 2007;87(11):1077- 91. https://doi.org/10.1038/labinvest.3700669
64. Yoshimura T, Leonard EJ. Secretion by human fibroblasts of monocyte chemoattractant protein-1, the product of gene JE. J Immunol. 1990;144(6):2377-83. https://doi. org/10.4049/jimmunol.144.6.2377
65. Arici A, Oral E, Attar E, Tazuke SI, Olive DL. Monocyte chemotactic protein-1 concentration in peritoneal fluid of women with endometriosis and its modulation of expression in mesothelial cells. Fertil Steril. 1997;67(6):1065-72. https://doi.org/10.1016/S0015-0282(97)81440-9
66. Wu MH, Wang CA, Lin CC, Chen LC, Chang WC, Tsai SJ. Distinct regulation of cyclooxygenase-2 by interleukin- 1beta in normal and endometriotic stromal cells. J Clin Endocrinol Metab. 2005;90(1):286-95. https://doi. org/10.1210/jc.2004-1612
67. Yu T, Lao X, Zheng H. Influencing COX-2 Activity by COX Related Pathways in Inflammation and Cancer. Mini Rev Med Chem. 2016;16(15):1230-43. https://doi.org/10. 2174/1389557516666160505115743
68. Olivares CN, Bilotas MA, Ricci AG, Barañao RI, Meresman GF. Anastrozole and celecoxib for endometriosis treatment, good to keep them apart? Reproduction. 2013;145(2):119- 26. https://doi.org/10.1530/REP-12-0386
69. D’Hooghe TM, Nugent NP, Cuneo S, Chai DC, Deer F, Debrock S, et al. Recombinant human TNFRSF1A (r-hTBP1) inhibits the development of endometriosis in baboons: a prospective, randomized, placebo- and drugcontrolled study. Biol Reprod. 2006;74(1):131-6. https:// doi.org/10.1095/biolreprod.105.043349
70. Liu Y, Wang J, Zhang X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int J Biol Sci. 2022;18(11):4400-13. https://doi.org/10.7150/ijbs.72707
71. Wieser F, Vigne JL, Ryan I, Hornung D, Djalali S, Taylor RN. Sulindac suppresses nuclear factor-kappaB activation and RANTES gene and protein expression in endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 2005;90(12):6441-7. https://doi. org/10.1210/jc.2005-0972
72. Wei X, Shao X. Nobiletin alleviates endometriosis via down-regulating NF-κB activity in endometriosis mouse model. Biosci Rep. 2018;38(3). https://doi.org/10.1042/ BSR20180470
73. Li J, Yan S, Li Q, Huang Y, Ji M, Jiao X, et al. Macrophageassociated immune checkpoint CD47 blocking ameliorates endometriosis. Mol Hum Reprod. 2022;28(5). https://doi. org/10.1093/molehr/gaac010
74. Sun H, Li D, Yuan M, Li Q, Zhen Q, Li N, et al. Macrophages alternatively activated by endometriosisexosomes contribute to the development of lesions in mice. Mol Hum Reprod. 2019;25(1):5-16. https://doi. org/10.1093/molehr/gay049
75. Jeung IC, Chung YJ, Chae B, Kang SY, Song JY, Jo HH, et al. Effect of helixor A on natural killer cell activity in endometriosis. Int J Med Sci. 2015;12(1):42-7. https://doi. org/10.7150/ijms.10076
76. Itoh H, Sashihara T, Hosono A, Kaminogawa S, Uchida M. Lactobacillus gasseri OLL2809 inhibits development of ectopic endometrial cell in peritoneal cavity via activation of NK cells in a murine endometriosis model. Cytotechnology. 2011;63(2):205-10. https://doi. org/10.1007/s10616-011-9343-z
77. Gómez R, Abad A, Delgado F, Tamarit S, Simón C, Pellicer A. Effects of hyperprolactinemia treatment with the dopamine agonist quinagolide on endometriotic lesions in patients with endometriosis-associated hyperprolactinemia. Fertil Steril. 2011;95(3):882-8.e1. https://doi.org/10.1016/j.fertnstert.2010.10.024
78. Pellicer N, Galliano D, Herraiz S, Bagger YZ, Arce JC, Pellicer A. Use of dopamine agonists to target angiogenesis in women with endometriosis. Hum Reprod. 2021;36(4):850-8. https://doi.org/10.1093/humrep/ deaa337
79. Tejada M, Santos-Llamas AI, Fernández-Ramírez MJ, Tarín JJ, Cano A, Gómez R. A Reassessment of the Therapeutic Potential of a Dopamine Receptor 2 Agonist (D2-AG) in Endometriosis by Comparison against a Standardized Antiangiogenic Treatment. Biomedicines. 2021;9(3). https://doi.org/10.3390/biomedicines9030269
80. Somigliana E, Viganò P, Rossi G, Carinelli S, Vignali M, Panina-Bordignon P. Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Hum Reprod. 1999;14(12):2944- 50. https://doi.org/10.1093/humrep/14.12.2944
81. Li L, Liao Z, Ye M, Jiang J. Recombinant human IL- 37 inhibited endometriosis development in a mouse model through increasing Th1/Th2 ratio by inducing the maturation of dendritic cells. Reprod Biol Endocrinol. 2021;19(1):128. https://doi.org/10.1186/s12958-021- 00811-3
82. Ingelmo JM, Quereda F, Acién P. Intraperitoneal and subcutaneous treatment of experimental endometriosis with recombinant human interferon-alpha-2b in a murine model. Fertil Steril. 1999;71(5):907-11. https://doi. org/10.1016/S0015-0282(99)00087-4
83. Cakmak H, Basar M, Seval-Celik Y, Osteen KG, Duleba AJ, Taylor HS, et al. Statins inhibit monocyte chemotactic protein 1 expression in endometriosis. Reprod Sci. 2012;19(6):572-9. https://doi. org/10.1177/1933719111430998
84. Falomo ME, Ferroni L, Tocco I, Gardin C, Zavan B. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis. Biomed Res Int. 2015;2015:141485. https://doi.org/10.1155/2015/141485
85. Koippallil Gopalakrishnan AR, Kishore U, Madan T. Mesenchymal stem cells: a promising tool for targeted gene therapy of endometriosis. Regen Med. 2017;12(1):69-76. https://doi.org/10.2217/rme-2016-0084
86. El-Zayadi AA, Mohamed SA, Arafa M, Mohammed SM, Zayed A, Abdelhafez MS, et al. Anti-IL-6 receptor monoclonal antibody as a new treatment of endometriosis. Immunol Res. 2020;68(6):389-97. https://doi.org/10.1007/ s12026-020-09153-5 87. Karamian A, Paktinat S, Esfandyari S, Nazarian H, Ziai SA, Zarnani AH, et al. Pyrvinium pamoate induces in-vitro suppression of IL-6 and IL-8 produced by human endometriotic stromal cells. Hum Exp Toxicol. 2021;40(4):649-60. https://doi. org/10.1177/0960327120964543
88. Wang L, Tan YJ, Wang M, Chen YF, Li XY. DNA Methylation Inhibitor 5-Aza-2’-Deoxycytidine Modulates Endometrial Receptivity Through Upregulating HOXA10 Expression. Reprod Sci. 2019;26(6):839-46. https://doi. org/10.1177/1933719118815575
89. Hsu YW, Chen HY, Chiang YF, Chang LC, Lin PH, Hsia SM. The effects of isoliquiritigenin on endometriosis in vivo and in vitro study. Phytomedicine. 2020;77:153214. https://doi.org/10.1016/j.phymed.2020.153214
90. Chang LC, Chiang YF, Chen HY, Huang YJ, Liu AC, Hsia SM. The Potential Effect of Fucoidan on Inhibiting Epithelial-to-Mesenchymal Transition, Proliferation, and Increase in Apoptosis for Endometriosis Treatment: In Vivo and In Vitro Study. Biomedicines. 2020;8(11). https://doi.org/10.3390/biomedicines8110528
91. Qi S, Yan L, Liu Z, Mu YL, Li M, Zhao X, et al. Melatonin inhibits 17β-estradiol-induced migration, invasion and epithelial-mesenchymal transition in normal and endometriotic endometrial epithelial cells. Reprod Biol Endocrinol. 2018;16(1):62. https://doi.org/10.1186/ s12958-018-0375-5
92. Yu MM, Zhou QM. 3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition, migration and invasion in endometrial stromal cells by inhibiting the Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22(12):4009-17.
93. Kapoor R, Sirohi VK, Gupta K, Dwivedi A. Naringenin ameliorates progression of endometriosis by modulating Nrf2/Keap1/HO1 axis and inducing apoptosis in rats. J Nutr Biochem. 2019;70:215-26. https://doi.org/10.1016/j. jnutbio.2019.05.003
94. Vallée A, Lecarpentier Y. Curcumin and Endometriosis. Int J Mol Sci. 2020;21(7). https://doi.org/10.3390/ ijms21072440
95. Porpora MG, Brunelli R, Costa G, Imperiale L, Krasnowska EK, Lundeberg T, et al. A promise in the treatment of endometriosis: an observational cohort study on ovarian endometrioma reduction by N-acetylcysteine. Evid Based Complement Alternat Med. 2013;2013:240702. https:// doi.org/10.1155/2013/240702
96. Hecht J, Suliman S, Wegiel B. Bacillus Calmette- Guerin (BCG) vaccination to treat endometriosis. Vaccine. 2021;39(50):7353-6. https://doi.org/10.1016/j. vaccine.2021.07.020
97. Brandau S, Böhle A. Activation of natural killer cells by Bacillus Calmette-Guérin. Eur Urol. 2001;39(5):518-24. https://doi.org/10.1159/000052497
98. Liu Q, Tian Y, Zhao X, Jing H, Xie Q, Li P, et al. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization. Mol Cells. 2015;38(10):886-94. https://doi.org/10.14348/molcells.2015.0125
99. Binda MM, Donnez J, Dolmans MM. Targeting mast cells: a new way to treat endometriosis. Expert Opin Ther Targets. 2017;21(1):67-75. https://doi.org/10.1080/14728 222.2017.1260548
100. Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy. 2016;8(8):889-906. https://doi.org/10.2217/imt-2016- 0049
101. Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, et al. Modulating T Cell Responses by Targeting CD3. Cancers (Basel). 2023;15(4). https://doi.org/10.3390/cancers15041189
102. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103-19. https://doi.org/10.1016/j. pharmthera.2019.04.006
103. Locatelli F, Zugmaier G, Rizzari C, Morris JD, Gruhn B, Klingebiel T, et al. Effect of Blinatumomab vs Chemotherapy on Event-Free Survival Among Children With High-risk First-Relapse B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA. 2021;325(9):843-54. https://doi.org/10.1001/ jama.2021.0987
104. Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel). 2021;13(2). https://doi.org/10.3390/ cancers13020287
105. Faber ML, Oldham RAA, Thakur A, Rademacher MJ, Kubicka E, Dlugi TA, et al. Novel anti-CD30/ CD3 bispecific antibodies activate human T cells and mediate potent anti-tumor activity. Front Immunol. 2023;14:1225610. https://doi.org/10.3389/ fimmu.2023.1225610
106. Waiser J, Duerr M, Budde K, Rudolph B, Wu K, Bachmann F, et al. Treatment of Acute Antibody-Mediated Renal Allograft Rejection With Cyclophosphamide. Transplantation. 2017;101(10):2545-52. https://doi. org/10.1097/TP.0000000000001617
107. Xu D, Alegre ML, Varga SS, Rothermel AL, Collins AM, Pulito VL, et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell Immunol. 2000;200(1):16-26. https://doi. org/10.1006/cimm.2000.1617
108. Hickey JW, Dong Y, Chung JW, Salathe SF, Pruitt HC, Li X, et al. Engineering an Artificial T-Cell Stimulating Matrix for Immunotherapy. Adv Mater. 2019;31(23):e1807359. https://doi.org/10.1002/adma.201807359
109. Cheung AS, Zhang DKY, Koshy ST, Mooney DJ. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat Biotechnol. 2018;36(2):160-9. https://doi.org/10.1038/nbt.4047
110. Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987;84(5):1374-8. https://doi.org/10.1073/ pnas.84.5.1374
111. Tran GT, Carter N, He XY, Spicer TS, Plain KM, Nicolls M, et al. Reversal of experimental allergic encephalomyelitis with non-mitogenic, non-depleting anti-CD3 mAb therapy with a preferential effect on T(h)1 cells that is augmented by IL-4. Int Immunol. 2001;13(9):1109-20. https://doi.org/10.1093/intimm/13.9.1109
112. Kohm AP, Williams JS, Bickford AL, McMahon JS, Chatenoud L, Bach JF, et al. Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J Immunol. 2005;174(8):4525-34. https://doi.org/10.4049/ jimmunol.174.8.4525
113. Waldron-Lynch F, Henegariu O, Deng S, Preston- Hurlburt P, Tooley J, Flavell R, et al. Teplizumab induces human gut-tropic regulatory cells in humanized mice and patients. Sci Transl Med. 2012;4(118):118ra12. https:// doi.org/10.1126/scitranslmed.3003401
114. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1692-8. https://doi.org/10.1056/ NEJMoa012864
115. Ludvigsson J, Eriksson L, Nowak C, Teixeira PF, Widman M, Lindqvist A, et al. Phase III, randomised, double-blind, placebo-controlled, multicentre trial to evaluate the efficacy and safety of rhGAD65 to preserve endogenous beta cell function in adolescents and adults with recently diagnosed type 1 diabetes, carrying the genetic HLA DR3-DQ2 haplotype: the DIAGNODE-3 study protocol. BMJ Open. 2022;12(10):e061776. https:// doi.org/10.1136/bmjopen-2022-061776
116. Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest. 2005;115(10):2904-13. https://doi. org/10.1172/JCI23961
117. Belghith M, Bluestone JA, Barriot S, Mégret J, Bach JF, Chatenoud L. TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med. 2003;9(9):1202- 8. https://doi.org/10.1038/nm924
118. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352(25):2598-608. https://doi. org/10.1056/NEJMoa043980
119. Plevy S, Salzberg B, Van Assche G, Regueiro M, Hommes D, Sandborn W, et al. A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology. 2007;133(5):1414-22. https://doi.org/10.1053/j. gastro.2007.08.035
120. Newman MJ, Benani DJ. A review of blinatumomab, a novel immunotherapy. J Oncol Pharm Pract. 2016;22(4):639-45. https://doi.org/10.1177/1078155215 618770
121. Fu Y, Xiao W, Mao Y. Recent Advances and Challenges in Uveal Melanoma Immunotherapy. Cancers (Basel). 2022;14(13). https://doi.org/10.3390/cancers14133094
122. Dhillon S. Tebentafusp: First Approval. Drugs. 2022;82(6):703-10. https://doi.org/10.1007/s40265-022- 01704-4
123. Munksgaard PS, Blaakaer J. The association between endometriosis and ovarian cancer: a review of histological, genetic and molecular alterations. Gynecol Oncol. 2012;124(1):164-9. https://doi.org/10.1016/j. ygyno.2011.10.001
124. Higashiura Y, Kajihara H, Shigetomi H, Kobayashi H. Identification of multiple pathways involved in the malignant transformation of endometriosis (Review). Oncol Lett. 2012;4(1):3-9. https://doi.org/10.3892/ ol.2012.690
125. Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy: A review. Pharmacol Ther. 2018;185:122- 34. https://doi.org/10.1016/j.pharmthera.2017.12.002
126. Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol. 2016;9(1):113. https://doi.org/10.1186/ s13045-016-0343-5
127. Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, et al. Bispecific Antibodies: From Research to Clinical Application. Front Immunol. 2021;12:626616. https://doi.org/10.3389/fimmu.2021.626616
128. Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195-208. https://doi. org/10.2147/DDDT.S151282
129. Liu Y, Nguyen AW, Maynard JA. Engineering antibodies for conditional activity in the solid tumor microenvironment. Curr Opin Biotechnol. 2022;78:102809. https://doi. org/10.1016/j.copbio.2022.102809
130. Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31(10):2181-90. https://doi.org/10.1038/ leu.2017.41
131. Fazleabas AT, Braundmeier A, Parkin K. Endometriosisinduced changes in regulatory T cells - insights towards developing permanent contraception. Contraception. 2015;92(2):116-9. https://doi.org/10.1016/j.contracepti on.2015.06.006
Files | ||
Issue | Vol 7 No 4 (2024) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ajs.v7i4.17468 | |
Keywords | ||
Endometriosis CD3 Bispecific antibody Monoclonal antibody Immunology Therapy |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |